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h i g h l i g h t s

• Obesity is modelled using a latent class model.
• A latent variable for class membership is defined as a function of observables and unobservables.
• Equations defining the class membership and observed outcomes are allowed to be correlated.
• There are significant correlations between these equations.
• The model can easily be applied to more classes and/or to models other than OP.
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a b s t r a c t

We extend the discrete data latent class literature by explicitly defining a latent variable for class mem-
bership as a function of both observables and unobservables, thereby allowing the equations defining the
class membership and observed outcomes to be correlated. The procedure is then applied to modelling
observed obesity outcomes, based upon an underlying ordered probit equation.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction and background

Latent class models are increasingly popular across both the
physical and social sciences. With regard to economics, their use
is particularly widespread in the health economics literature (for
example see Deb and Trivedi, 2002, Bago D’Uva, 2005a,b). The
approach involves probabilistically splitting the population into a
set of unobserved homogeneous segments; within each class an
appropriate econometricmodel applies. This yields a parsimonious
way of introducing heterogeneity into a model. Ex post, it is then
possible to assign individuals into their most likely class, typically
defined by the outcome variable in each class.

In the latent class literature however, there is an implicit as-
sumption that any unobservables driving class membership and
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those in the main econometric model are independent. The refine-
ment here is to explicitly specify a latent variable for class mem-
bership, as a function of both observables and unobservables, and
via the latter, explicitly model this aspect of the correlation be-
tween class membership and observed outcomes. This framework
bears some resemblance to the switching regressions model and
the mover/stayer model (Greene, 2008). However, here, the indi-
vidual is not observed to be in either particular state (the true type
of the individual is unobserved); this has to be identified using
data. We illustrate this by modelling discrete observations of fe-
male obesity levels.

2. Econometric framework

Given our dependent variable, a useful starting point is the or-
dered probit (OP) model for the j = 1, . . . , J outcomes

y∗
= z ′γ + u

y = j if µj−1 < y∗
≤ µj, j = 1, . . . , J, µ0 = −∞, µJ = +∞.
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With normally distributed disturbances (u), this implies

Pr(y) =


Pr (y = 1) = Φ


µ1 − z ′γ


Pr (y = j) = Φ


µj − z ′γ


− Φ


µj−1 − z ′γ


;

for 1 < j < J
Pr (y = J) = Φ


µJ−1 − z ′γ


 (1)

where Φ is the standard normal cumulative distribution function
(cdf ); µ are cut-off points; and z are covariates with unknown
weights γ ; and where y is the observed BMI range.

Herbert et al. (2006) find evidence that an obesity predisposing
geno-type is present in 10% of individuals. Given that about 25%
of our sample are categorized as obese, this supports a hypothesis
that factors other than genetics impact upon the probability of be-
ing obese. Individuals in the population are broadly segmented into
two classes: consider two individuals in the same observed obesity
range; one may be there due to time-invariant, or fixed, charac-
teristics (such as genetics) while the other because of lifestyle or
behavioural choices.

Indeed, these two distinct sets of individuals are likely to have
completely different reaction curves to alternative policymeasures
and therefore not taking this latent decomposition into account
could result in biased estimates and erroneous policy conclusions.
Let the latent variable c∗ determine class membership, based on a
function of a vector of observed characteristics x, with unknown
weights β and a random disturbance term ε such that

c∗
= x′β + ε. (2)

Under normality, the probability of an individual belonging to class
1 (and one minus this for class 0) is given by

Pr (c = 1|x) = Pr

c∗ > 0|x


= Φ


x′β


.

Pr (c = 1|x) = Pr

c∗ > 0|x


= Φ


x′β


.

Pr (c = 1|x) = Pr

c∗ > 0|x


= Φ


x′β


.

Note that neither c∗ nor c , is observed. The latent class framework
implies that conditional on being in class 0 or 1, outcomes are de-
termined by the relevant OP model: that is, we have a different OP
equation for each class. The overall probability of an outcome is
simply the sum of those from the two latent classes, such that

Pr(y = j|x, z) = Pr(c = 0|x) Pr(y = j|z, c = 0)
+ Pr(c = 1|x) Pr(y = j|z, c = 1).

For those belonging to class 0 we have

Pr =



Pr (y = 1, c = 0|x, z)
=


1 − Φ


x′β

 
Φ


µ0,1 − z ′γ0


Pr (y = j, c = 0|x, z)

=

1 − Φ


x′β

 
Φ


µ0,j − z ′γ0


−Φ


µ0,j−1 − z ′γ0


; 1 < j < J

Pr (y = J, c = 0|x, z)
=


1 − Φ


x′β

 
1 − Φ


µ0,J−1 − z ′γ0


.

(3)

We expand the usual specification by allowing ε and u to be freely
correlated, with respective correlation coefficients ρ0 and ρ1. The
respective probabilities are now defined by a bivariate standard
normal distribution. Therefore, for membership in class 1 (c = 1),
for example, the joint probabilities for the class membership and
the obesity outcome are given by

Pr (y = j, c = 1)

=


Pr (y = 1, c = 1|x, z) = Φ2


x′β, µ1,1 − z ′γ1; ρ1


Pr (y = j, c = 1|x, z) = Φ2


x′β, µ1,j − z ′γ1; ρ1


−Φ2


x′β, µ1,j−1 − z ′γ1; ρ1


; 1 < j < J

Pr (y = j, c = 1|x, z) = Φ2

x′β, z ′γ1 − µ1,J−1; ρ1

 (4)

where Φ2(., .; ρ) denotes the cumulative distribution function
of the standardized bivariate normal distribution. We note, the
specification of the correlation between the unobservables in the
equations adds a dimension to the familiar latent class model. The
class memberships and the observed outcomes are jointly deter-
mined by both the observables and the unobservables now added
to the model.

The log-likelihood function for the observed data for a random
sample of N individuals is constructed under the constraint that c
is unobserved. Thus, the contribution to the log-likelihood for in-
dividual i is

log Li (θ) = log Prob (yi = j|xi, zi)
= log (Prob (yi = j|zi, ci = 0) Prob (ci = 0|xi)

+ Prob (yi = j|zi, ci = 1) Prob (ci = 1|xi))
= log (Prob (yi = j, ci = 0|zi, xi) /Prob (ci = 0|xi)

× Prob (ci = 0|xi)
+ Prob (yi = j, ci = 1|zi, xi) /Prob (ci = 1|xi)
× Prob (ci = 1|xi)) . (5)

The resulting contribution to the log likelihood is the sum of the
logs of the joint probabilities:

log Li (θ) = log Prob(yi = j|xi, zi)
= log (Prob(yi = j, c = 0|xi, zi)

+ Prob(yi = j, c = 1|xi, zi)) . (6)

The log-likelihood for the sample is obtained by summing the
terms in (6) over the individuals in the sample. Combining terms
for the OP model

log Li (θ) =

N
i=1

log Prob(yi = j|xi, zi)

=

N
i=1

log
J

j=1

hij (Prob(yi = j, ci = 0|zi, xi)

+ Prob(yi = j, ci = 1|zi, xi)) (7)
where hij is the usual indicator function. Tests of ρc = 0 are tests
of independence of the respective error terms.

As a further refinement to the basic OP specification, we also
allow for the fact that (in our obesity example) strict adherence
to the World Health Organisation (WHO) defined boundaries may
be too strict: athletes may have relatively high BMI levels due to
a high percentage of muscle mass, rather than fat, for example. To
account for this we adopt a generalized OP variant (Pudney and
Shields, 2000),where the boundary parameters are functions of ob-
served personal characteristics. To aid in the identification, and to
ensure the proper ordering of the boundary parameters, they are
specified as

µci1 = αc1 + exp

w′

iδc


µci2 = µci1 + exp

αc2 + w′

iδc


µci3 = µci2 + exp

αc2 + w′

iδc


...

(8)

where the w are variables (excluding a constant term) that affect
the position of the boundary parameters with unknownweights δ.

3. Data and variable selection

Using the US National Health Interview Survey (2007), and fo-
cusing on females due to space constraints,1 we have a sample size

1 Full results, including those for simpler nested sub-models, can be found in the
Working Paper version at http://ideas.repec.org/p/ste/nystbu/08-18.html.
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Table 1
Descriptive statistics. Female sample.

Description Mean Variable inclusion
Splitting equation (x) OP equations (z) Boundary equations (w)

Age/10 (scaled for convergence) 4.7354 × ×

(1.8085)
Age 10 squared 25.6946 × ×

(18.5138)
Duration of strength (weight training) exercise 0.7131 ×

(2.1068)
Born in the US 0.8086 ×

(0.3934)
Born in South America 0.1210 ×

(0.3262)
Born in Europe or Russia 0.0195 ×

(0.1382)
Hispanic 0.1845 ×

(0.3879)
White 0.5789 ×

(0.4938)
Black 0.1780 ×

(0.3825)
Born between 1925 and 1942 0.1657 ×

(0.3718)
Born between 1943 and 1953 0.1572 ×

(0.3640)
Born between 1954 and 1965 0.2225 ×

(0.4160)
Born between 1966 and 1980 0.2779 ×

(0.4480)
Born between 1981 and 1995 0.1425 ×

(0.3496)
Married 0.4662 ×

(0.4989)
Income category 0.9682 ×

(0.6465)
Square of income category 1.3554 ×

(1.5155)
Years of schooling 14.5292 ×

(3.4713)
Own house 0.6121 ×

(0.4873)
Conducted moderate exercise in the last week 0.3171 ×

(0.4654)
Number of times vigorous exercise undertaken in the last week 1.2445 ×

(2.8057)

Normal weight 0.4294
Overweight 0.3001
Obese 0.2212
Morbidly obese 0.0494

Sample size 11244
of 11,244. Four WHO BMI categories are considered2: 43% are nor-
mal weight (BMI ∈ (18.5, 25)); 30% are overweight (BMI ∈ (25,
30)); 22% are obese (BMI ∈ (30, 40)); and 5% are morbidly obese
(BMI > 40). While using this kind of ordinal measure of BMI does
not use all available information, it has two distinct advantages.
First, height andweight of individuals are potentially sensitive per-
sonal issues such that there is likely to be mis-reporting (in addi-
tion to recall bias and/or imperfect knowledge) of true height and
weight levels resulting inmeasurement error in the (self-reported)
BMI numerical values (see, for example, Gorber et al., 2007). It is
not clear what the direction of this measurement error is. How-
ever, one can assume without significant loss of generality, that
while the true BMImay not always be correctly ‘‘measured’’ (when
self-reported, as is typically the case), the BMI category is likely to
be correct. While this is more likely to be true within each cate-
gory, the potential problem arising at the extremes in the form of
mis-categorization is also taken into account in our analysis, since

2 We drop underweight women (BMI < 18.5).
we allow the boundary parameters to vary with observed charac-
teristics. The second advantage of using ordinal BMI levels is that
policy makers are arguably more interested in movement across
these categories, rather than marginal changes within them. For
the purpose of this paper we have four categories: normal weight;
overweight; obese; and morbidly obese.

Table 1 presents the sample averages. The average woman in
the sample is around 47 years old, likely to beWhite (58%), born in
the US (81%), born between 1954 and 1980 (50%), unmarried (54%),
likely to own a house (61%) and having some college education.

Here we choose latent class covariates akin to proxies for an in-
dividual’s ‘fixed effect’ (Greene, 2008): where the individual was
born; whetherWhite, Black, Hispanic, or ‘other’; and a set of broad
time cohort dummies.3 Following the literature, the set of ex-
planatory variables included in z are time-varying variables, which
typically represent the lifestyle choices of the individual. Finally,
variables included in the boundary parametersw include variables

3 Our approach is flexible enough to accommodate various forms of this,
including null vectors in x for example.
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Table 2
Parameter estimates.

Panel A: Splitting function parameters

Constant −0.72*

(0.37)
Born in US 0.59***

(0.18)
Born in South America 0.21

(0.16)
Born in Europe 0.34*

(0.20)
Hispanic 0.56***

(0.18)
White 0.29**

(0.13)
Black 0.83***

(0.21)
Born between 1925 and 1942 0.41***

(0.13)
Born between 1943 and 1953 0.56***

(0.20)
Born between 1954 and 1965 0.22

(0.20)
Born between 1966 and 1980 0.05

(0.22)
Born between 1981 and 1995 −0.46*

(0.25)

Panel B: OP parameters Class 0 (Inherently non-obese) Class 1 (Inherently obese)

Age/10 1.05 0.85
(4.59) (2.82)

(Age/10)2 −0.02 −0.44
(4.50) (2.48)

Married 0.39***
−0.07

(0.13) (0.06)
Income category 0.30 0.05

(0.32) (0.15)
(Income category)2 −0.20 −0.06

(0.14) (0.07)
Years of schooling −0.05***

−0.01*

(0.02) (0.01)
Own home −0.11 −0.08

(0.11) (0.05)
Conducted moderate exercise in the last week 0.17 −0.19***

(0.15) (0.07)
Number of times vigorous exercise undertaken in the last week −0.04 −0.01

(0.03) (0.01)

Panel C: Boundary parameters Class 0 (Inherently non-obese) Class 1 (Inherently obese)

µ0 −0.64 −1.84***

(0.62) (0.62)
µ1 −0.69 −0.19

(0.46) (0.35)
µ2 0.29 0.08

(0.43) (0.36)
Age/10 −0.01 −0.58

(2.21) (1.14)
(Age/10)2 1.13 1.01

(2.39) (1.04)
Duration of strength (weight training) exercise 0.76** 0.03

(0.32) (0.05)
Correlation −0.72**

−0.66***

(0.29) (0.14)
Average outcome probabilities

Normal weight 0.6141 0.3093
Overweight 0.2295 0.3516
Obese 0.1522 0.2871
Morbidly obese 0.0042 0.0520

Log likelihood −8370.3054

Standard errors in parentheses.
* Significance: 10%.
** Significance: 5%.
*** Significance: 1%.
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that can potentially cause the boundaries to shift at the mar-
gin (here taken to be the number of times the respondent
weight/strength trains per week, and a quadratic in age). The list of
variables included in x, z and w is summarized in Table 1 as well.

4. Results

In such a bivariate latent class model, it is not obvious how to
compute the posterior class probabilities independently from the
choice probabilities. Indeed, it is in this way that classes are usu-
ally labelled (Bago d’Uva et al., 2009). However, it is possible to
compute (post-estimation), for each individual, the probabilities of
them being in each BMI-category by class, using the expressions in
Eqs. (4) and (8). Averaging the posterior class probabilities over in-
dividuals produces the overall average outcome probabilities. We
find in class 0 that the probabilities are skewed away from be-
ing in either the overweight, obese, or morbidly obese categories;
respective probabilities are 0.2295, 0.1522 and 0.0042. Thus we
label this the inherently non-obese class. Compare this to 0.3516,
0.2871 and 0.0520 respectively, the probabilities we find in class 1
(consequently, the inherently obese class). Additionally both ρ0 and
ρ1 are highly statistically significant, indicating significant correla-
tions between the unobservables in the two equations driving both
class and observed BMI outcome.

The regression results are presented in Table 2. With regard to
the latent class equation (Panel A), it is primarily determined by
the country of birth, race and a set of birth cohort variables. The
OP estimates (Panel B) show that irrespective of class, given the
other factors, age, income and wealth do not appear to affect BMI
levels. In the inherently non-obese category, increased educational
attainment is negatively associated with the probability of being
morbidly obese—the partial effects (available upon request) indi-
cate that for an inherently non-obese female an additional year of
schooling is associated with a 0.9% point increase in the probabil-
ity of being of normal weight, and a 0.4% and 0.5% point reduction
in the probability of being overweight or obese. The results are
qualitatively similar for females in the inherently obese category
(the magnitude is smaller). An increase in the duration of exercise
significantly increases the probability (by 4.9% points) that a
woman is of normal weight for inherently obese females; matched
by a 5.2% point reduction in the probability that an inherently
obese woman is in the obese or morbidly obese category.

Finally, turning to the boundary equations, (Panel C), only the
frequency of weight training seems to have a statistically signifi-
cant effect. But this suggests that for females in the inherently non-
obese category, strict interpretation of the WHO boundaries may
be inappropriate for some individuals.

5. Conclusions

This paper extends the finite mixture/latent class model liter-
ature by explicitly defining a latent variable for class membership
as a function of both observables and unobservables, thereby al-
lowing the equations defining the class membership and observed
outcomes to be correlated. The procedure was illustrated with an
application to an OP model with two classes. Indeed, the results
show that there are significant correlations between these equa-
tions. With obvious generalizations, the model can easily be ap-
plied to more classes and/or to models other than OP.
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