TWO FACTOR ANALYSIS OF VARIANCE

Jose Luis Ibave G., Ph.D.

TThere are tho important considerations when calculating the two factor ANOVA: first, it is necessary to lay out the data correctly and second, the correct error terms must be chosen for the variance ratios. In this study notes three different types of two factor ANOVA are dealt with: the two factor independent measures ANOVA where both the factors, A and B, are independent measures; the two factor mixed design ANOVA where Factor A is independent measures and Factor B is repeated measures, and the two factor repeated measures ANOVA where both Factor A and Factor B are repeated measures.

The two factor independent measures ANOVA

The simplest two factor ANOVA to calculate is where both factors are independent measures. Here the between conditions variance has to be separated into that arising from Factor A, Factor B and the interaction $A \times B$, as in all two factor ANOVAs. As there are individual differences in all sums of squares calculations we can use the within conditions variance as the error term for all three variance ratios. This makes the calculations relatively easy. We, therefore, complete the following ANOVA summary table.

THE ANOVA SUMMARY TABLE

Source of variation	Degrees of freedom	Sums of squares	Mean square	Variance ratio (F)	Probability
Factor A	$d f_{A}$	$S S_{A}$	$M S_{A}$	F_{A}	p_{A}
Factor B	$d f_{B}$	$S S_{B}$	$M S_{B}$	F_{B}	p_{B}
Interaction $A \times B$	$d f_{A \times B}$	$S S_{A \times B}$	$M S_{A \times B}$	$F_{A \times B}$	$p_{A \times B}$
Error (Within conditions)	$d f_{\text {error }}$	$S S_{\text {error }}$			
Total	$d f_{\text {total }}$	$S S_{\text {total }}$			

CALCULATING THE TWO FACTOR ANOVA

The results table

Organising the results table is important for all ANOVAs but which factor we choose as the rows and which as the columns is not as crucial for the two factor independent measures ANOVA as for the other types of two factor ANOVA, but it is important to get the various totals of the different conditions and combination of conditions correct. The following data layout is a good example to use for clarity and organisation. ${ }^{11}$

THE RESULTS TABLE

	Factor B				
Factor A	Condition B_{1}	Condition B_{2}	...	Condition B_{b}	
Condition A_{1}	X_{1}	X	...	χ	
	X_{2}	X	\ldots	X	
	:	:	...	:	
	X_{n}	X	...	X	
	$T_{A_{1} B_{1}}$	$T_{A_{1} B_{2}}$...	$T_{A_{l} B_{b}}$	$T_{A_{1}}$
Condition A_{2}	X	x_{\ldots}	...	x_{\ldots}	
	x	x_{\ldots}	...	x	
				\vdots	
	X	$X_{\text {I. }}$	\ldots	X	
	$T_{A_{2} B_{1}}$	$T_{A_{2} B_{2}}$...	$T_{A_{2} B_{b}}$	$T_{A_{2}}$
:	!	!	:	:	
Condition A_{a}	X	X		X	
	X	χ		X	
	:	:		:	
	X	X		$X_{\text {abn }}$	
	$T_{A_{a} B_{1}}$	$T_{A_{0} B_{2}}$...	$T_{A_{a} B_{b}}$	$T_{A_{\sigma}}$
	$T_{B_{1}}$	$T_{B_{2}}$		$T_{B_{b}}$	$\sum X$

The formulae for calculation

Degrees of freedom:

$$
\begin{array}{ll}
d f_{A}=a-1 & \begin{array}{l}
\text { where } a \text { is the number of condition of } \\
\text { Factor } A .
\end{array} \\
d f_{B}=b-1 & \begin{array}{l}
\text { where } b \text { is the number of conditions of } \\
\text { Factor } B .
\end{array} \\
d f_{A \times B}=(a-1)(b-1) & \begin{array}{l}
\text { where } n \text { is the number of scores in an } A B \\
\text { condition. }
\end{array} \\
d f_{\text {error }}=a b(n-1) & \begin{array}{l}
\text { where } N \text { is the total number of scores in } \\
\text { the data. }
\end{array} \\
d f_{\text {total }}=N-1
\end{array}
$$

Sums of squares:

$$
\begin{aligned}
S S_{\text {total }} & =\sum X^{2}-\frac{\left(\sum X\right)^{2}}{N} \\
S S_{A} & =\frac{\sum T_{A}^{2}}{n b}-\frac{\left(\sum X\right)^{2}}{N} \text { where } \sum T_{A}^{2} \text { is } T_{A_{1}}^{2}+T_{A_{2}}^{2}+\ldots+T_{A_{a}}^{2} \\
S S_{B} & =\frac{\sum T_{B}^{2}}{n a}-\frac{\left(\sum X\right)^{2}}{N} \text { where } \sum T_{B}^{2} \text { is } T_{B_{1}}^{2}+T_{B_{2}}^{2}+\ldots+T_{B_{b}}^{2} \\
S S_{A \times B} & =\frac{\sum T_{A B}^{2}}{n}-\frac{\left(\sum X\right)^{2}}{N}-S S_{A}-S S_{B} \quad \text { where } \sum T_{A B}^{2} \text { is } \\
S S_{\text {error }} & =S S_{\text {total }}^{2}-S S_{A}-S S_{B}-S S_{A \times B}
\end{aligned}
$$

(There is an alternative formula for $S S_{\text {error }}$:

$$
S S_{\text {error }}=S S_{\text {with.conds }}=\sum X^{2}-\frac{\sum T_{A B}^{2}}{n}
$$

Both formulae should give the same answer.)

Mean square:

$$
\begin{gathered}
M S_{A}=\frac{S S_{A}}{d f_{A}} \\
M S_{B}=\frac{S S_{B}}{d f_{B}} \\
M S_{A \times B}=\frac{S S_{A \times B}}{d f_{A \times B}} \\
M S_{\text {error }}=
\end{gathered}
$$

Variance ratio:

$$
\begin{aligned}
F_{A}\left(d f_{A}, d f_{\text {error }}\right) & =\frac{M S_{A}}{M S_{\text {error }}} \\
F_{B}\left(d f_{B}, d f_{\text {error }}\right) & =\frac{M S_{B}}{M S_{\text {error }}} \\
F_{A \times B}\left(d f_{A \times B}, d f_{\text {error }}\right) & =\frac{M S_{A \times B}}{M S_{\text {error }}}
\end{aligned}
$$

The F values are then compared to the table values (Table A. 1 in the Appendix) at the chosen level of significance.
(The above calculations are based on equal numbers of scores, n, in each of the $A B$ conditions. It is possible to perform this analysis with unequal numbers of scores in each condition, as with the single factor independent measures ANOVA.

A worked example

An expanding company wanted to know how to introduce a new type of machine into the factory. Should it transfer staff working on the old machine
to operate it or employ new staff who had not worked on any machine before? A researcher selected 12 staff who had experience of the old machine and 12 staff who had no such experience. Half the participants from each group were allocated to the new machine and half to the old machine. The number of errors made by the participants over a set time period was measured. These errors are shown below.

Experience on old machine	Machine	
	Old	New
Novice	4	5
	5	6
	7	5
	6	6
	8	5
	5	6
	1	8
	2	9
	2	8
	3	8
	2	7
	3	9

What are the effects of the two factors experience on old machine and type of machine on the dependent variable number of errors?

Both factors are independent measures as a participant took part in only one experience/machine condition. I will label experience on old machine as Factor A, with two conditions $(a=2)$ 'novice' $\left(A_{1}\right)$ and 'experienced' $\left(A_{2}\right)$, and type of machine as Factor B, also with two conditions $(b=2)$, 'old machine' $\left(B_{1}\right)$ and 'new machine' $\left(B_{2}\right)$. There are four $A B$ conditions each with six participants $(n=6)$, giving twenty-four participants in all $(N=24)$.

Factor A	Factor B		
	B_{1}	B_{2}	
A_{1}	4	5	
	5	6	
	7	5	
	6	6	
	8	5	
	5	6	
	$T_{A_{1} B_{1}}=35$	$T_{A_{1} B_{2}}=33$	$T_{A_{1}}=68$
A_{2}	1	8	
	2	9	
	2	8	
	3	8	
	2	7	
	3	9	
	$T_{A_{2} B_{1}}=13$	$T_{A_{2} B_{2}}=49$	$T_{A_{2}}=62$
	$T_{B_{1}}=48$	$T_{B_{2}}=82$	$\sum X=130$

Degrees of freedom:

$$
\begin{aligned}
& d f_{A}=a-1=2-1=1 \\
& d f_{B}=b-1=2-1=1 \\
& d f_{A \times B}=(a-1)(b-1)=(2-1)(2-1)=1 \\
& d f_{\text {error }}=a b(n-1)=2 \times 2 \times(6-1)=20 \\
& d f_{\text {total }}=N-1=24-1=23
\end{aligned}
$$

Sums of squares:

$$
\begin{aligned}
S S_{\text {total }} & =\sum X^{2}-\frac{\left(\sum X\right)^{2}}{N}=\left(4^{2}+5^{2}+\ldots+7^{2}+9^{2}\right)-\frac{130^{2}}{24} \\
& =127.83 \\
S S_{A} & =\frac{\sum T_{A}^{2}}{n b}-\frac{\left(\sum X\right)^{2}}{N}=\frac{68^{2}+62^{2}}{6 \times 2}-\frac{130^{2}}{24}=1.50
\end{aligned}
$$

$$
\begin{aligned}
S S_{B} & =\frac{\sum T_{B}^{2}}{n a}-\frac{\left(\sum X\right)^{2}}{N}=\frac{48^{2}+82^{2}}{6 \times 2}-\frac{130^{2}}{24}=48.17 \\
S S_{A \times B} & =\frac{\sum T_{A B}^{2}}{n}-\frac{\left(\sum X\right)^{2}}{N}-S S_{A}-S S_{B} \\
& =\frac{35^{2}+33^{2}+13^{2}+49^{2}}{6}-\frac{130^{2}}{24}-1.50-48.17 \\
& =60.16 \\
S S_{\text {error }} & =S S_{\text {total }}-S S_{A}-S S_{B}-S S_{A \times B} \\
& =127.83-1.50-48.17-60.16=18.00
\end{aligned}
$$

Mean square:

$$
\begin{gathered}
M S_{A}=\frac{S S_{A}}{d f_{A}}=\frac{1.50}{1}=1.50 \\
M S_{B}=\frac{S S_{B}}{d f_{B}}=\frac{48.17}{1}=48.17 \\
M S_{A \times B}=\frac{S S_{A \times B}}{d f_{A \times B}}=\frac{60.16}{1}=60.16 \\
M S_{\text {error }}= \\
=\frac{S S_{\text {error }}}{d f_{\text {error }}}=\frac{18.00}{20}=0.90
\end{gathered}
$$

Variance ratio:

$$
\begin{gathered}
F_{A}(1,20)=\frac{M S_{A}}{M S_{\text {error }}}=\frac{1.50}{0.90}=1.67 \\
F_{B}(1,20)=\frac{M S_{B}}{M S_{\text {error }}}=\frac{48.17}{0.90}=53.52 \\
F_{A \times B}(1,20)=\frac{M S_{A \times B}}{M S_{\text {error }}}=\frac{60.16}{0.90}=66.84
\end{gathered}
$$

the AnOVA SUMMARY TABLE

Source of variation	Degrees of freedom	Sums of squares	Mean square	Variance ratio (F)	Probability
Factor A	1	1.50	1.50	1.67	$p>0.05$
Factor B	1	48.17	48.17	53.52	$p<0.01$
$A \times B$	1	60.16	60.16	66.84	$p<0.01$
Error	20	18.00	0.90		
Total	23	127.83			

From the tables of the F distribution (A. 3 in the Appendix), $F(1,20)$ $=4.35$ at $p=0.05$ and $F(1,20)=8.10$ at $p=0.01$. We can conclude that the effect of experience on an old machine is not significant at $p=0.05$ $(F(1,20)=1.67)$, the effect of type of machine $(F(1,20)=53.52)$ and the interaction $(F(1,20)=66.84)$ are both highly significant $(p<0.01)$.

We can examine the interaction by calculating the mean values. The table of means is shown below:

Experience on old machine	Machine	
	Old machine	New machine
Novice Experienced	2.83	5.50

These values are plotted in Figure 1.1. The first point to note is that the lines are not parallel so we have further evidence of the interaction. Notice that the experienced workers, not surprisingly, made fewest errors on the old machine. However, they made most errors on the new machine. This looks like a case of negative transfer, where previously learnt skills can be a hindrance rather than a help. An example of this occurs when a visitor to Britain, experienced in a left-hand drive car, reaches down to change gear with the wrong hand when driving a right-hand drive car. The novice workers appear to perform with equal accuracy on both machines.

FIGURE 1.1 The interaction of experience and machine on the number of errors

In this case the interaction is quite clear. However, for illustration the simple main effects will be calculated for the effect of type of machine on the two levels of experience. In the two factor independent design ANOVA the error term is once again the single error term from the summary table: $M S_{\text {error }}=0.90, d f_{\text {error }}=20$. This error term is used in all the simple main effects.

The simple main effect of type of machine on the novice operators, B at A_{1} :

$$
\left.\begin{array}{l}
S S_{B \text { at } A_{1}}=\frac{\sum T_{A_{1} B}^{2}}{n}-\frac{T_{A_{1}}^{2}}{b n}=\frac{35^{2}+33^{2}}{6}-\frac{68^{2}}{2 \times 6}=0.33 \\
d f_{B \text { at } A_{1}}=b-1=2-1=1 \text { (as it is the effect of } B \text { and } B \text { has } \\
2 \text { conditions) }
\end{array}\right] \begin{aligned}
& M S_{B \text { at } A_{1}}=\frac{S S_{B \text { at } A_{1}}}{d f_{B \text { at } A_{1}}}=\frac{0.33}{1}=0.33 \\
& F_{B \text { at } A_{1}}=\frac{M S_{B \text { at } A_{1}}}{M S_{\text {error }}}=\frac{0.33}{0.90}=0.37 \\
& \text { with degrees of freedom } d f_{B \text { at } A_{1}}=1 \text { and } d f_{\text {error }}=20 .
\end{aligned}
$$

From the F distribution tables we know that $F(1,20)=4.35$ at $p=0.05$, so we can conclude, as the calculated value of F is smaller, that we have not found an effect of type of machine on the novice operators.

The simple main effect of type of machine on the experienced operators, B at A_{2} :

$$
S S_{B a t A_{2}}=\frac{\sum T_{A_{2} B}^{2}}{n}-\frac{T_{A_{2}}^{2}}{b n}=\frac{13^{2}+49^{2}}{6}-\frac{62^{2}}{2 \times 6}=108.00
$$

$d f_{B \text { at } A_{2}}=b-1=2-1=1$ (as it is the effect of B, and B has 2 conditions)

$$
\begin{aligned}
M S_{B \text { at } A_{2}} & =\frac{S S_{B \text { at } A_{2}}}{d f_{B \text { at } A_{2}}}=\frac{108.00}{1}=108.00 \\
F_{B \text { at } A_{2}} & =\frac{M S_{B \text { at } A_{2}}}{M S_{\text {error }}}=\frac{108.00}{0.90}=120.00
\end{aligned}
$$

with degrees of freedom $d f_{B \text { at } A_{1}}=1$ and $d f_{\text {error }}=20$.

From the F distribution tables we know that $F(1,20)=8.10$ at $p=0.01$, so we can conclude, as the calculated value of F is considerably larger, that we have a found a highly significant effect of type of machine on the experienced operators.

The simple main effects usually explain the cause of an interaction but we can perform post hoc tests such as the Tukey or Scheffé tests if we wish. We need to be careful to select the appropriate comparison and the correct error term although it is particularly easy with the independent measures design as we use just the one error term.

APPENDIX

A. 1 Critical values of the F distribution

0.05 Level of significance

$d f 1$												
$d f 2$	1	2	3	4	5	6	7	8	9	10	20	∞
1	161.45	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54	241.88	248.01	254.32
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40	19.45	19.50
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.66	8.53
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.80	5.63
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.56	4.36
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	3.87	3.67
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.44	3.23
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.15	2.93
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.01
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.77	2.54
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.65	2.40
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.54	2.30
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.46	2.21
4	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.39	2.13
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.33	2.07
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.28	2.01
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.23	1.96
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.19	1.92
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.16	1.88
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.12	1.84
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32	2.10	1.81
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30	2.07	1.78
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27	2.05	1.76
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.03	1.73
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24	2.01	1.71
26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22	1.99	1.69
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25	2.20	1.97	1.67
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19	1.96	1.65
29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22	2.18	1.94	1.64
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	1.93	1.62
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	1.84	1.51
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99	1.75	1.39
120	3.92	3.07	2.68	2.45	2.29	2.18	2.09	2.02	1.96	1.91	1.66	1.25
∞	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83	1.57	1.00

The calculated value of F must be larger than or equal to the table value for significance.

A. 1 Critical values of the F distribution (continued)

0.01 Level of significance

						$d f 1$						
$d f 2$	1	2	3	4	5	6	7	8	9	10	20	∞
1	4052.2	4999.5	5403.3	5624.6	5763.7	5859.0	5928.3	5981.6	6022.5	6055.8	6208.7	6366.0
2	98.50	99.00	99.17	99.25	99.30	99.33	99.36	99.37	99.39	99.40	99.45	99.50
3	34.12	30.82	29.46	28.71	28.24	27.91	27.67	27.49	27.34	27.23	26.69	26.12
4	21.20	18.00	16.69	15.98	15.52	15.21	14.98	14.80	14.66	14.55	14.02	13.46
5	16.26	13.27	12.06	11.39	10.97	10.67	10.46	10.29	10.16	10.05	9.55	9.02
6	13.74	10.92	9.78	9.15	8.75	8.47	8.26	8.10	7.98	7.87	7.40	6.88
7	12.25	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.72	6.62	6.16	5.67
8	11.26	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.91	5.81	5.36	4.86
9	10.56	8.02	6.99	6.42	6.06	5.80	5.61	5.47	5.35	5.26	4.81	4.31
10	10.04	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.94	4.85	4.41	3.91
11	9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.63	4.54	4.10	3.60
12	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.39	4.30	3.86	3.36
13	9.07	6.70	5.74	5.21	4.86	4.62	4.44	4.30	4.19	4.10	3.66	3.17
14	8.86	6.51	5.56	5.04	4.70	4.46	4.28	4.14	4.03	3.94	3.51	3.00
15	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.89	3.80	3.37	2.87
16	8.53	6.23	5.29	4.77	4.44	4.20	4.03	3.89	3.78	3.69	3.26	2.75
17	8.40	6.11	5.18	4.67	4.34	4.10	3.93	3.79	3.68	3.59	3.16	2.65
18	8.29	6.01	5.09	4.58	4.25	4.01	3.84	3.71	3.60	3.51	3.08	2.57
19	8.18	5.93	5.01	4.50	4.17	3.94	3.77	3.63	3.52	3.43	3.00	2.49
20	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.46	3.37	2.94	2.42
21	8.02	5.78	4.87	4.37	4.04	3.81	3.64	3.51	3.40	3.31	2.88	2.36
22	7.95	5.72	4.82	4.31	3.99	3.76	3.59	3.45	3.35	3.26	2.83	2.31
23	7.88	5.66	4.76	4.26	3.94	3.71	3.54	3.41	3.30	3.21	2.78	2.26
24	7.82	5.61	4.72	4.22	3.90	3.67	3.50	3.36	3.26	3.17	2.74	2.21
25	7.77	5.57	4.68	4.18	3.86	3.63	3.46	3.32	3.22	3.13	2.70	2.17
26	7.72	5.53	4.64	4.14	3.82	3.59	3.42	3.29	3.18	3.09	2.66	2.13
27	7.68	5.49	4.60	4.11	3.78	3.56	3.39	3.26	3.15	3.06	2.63	2.10
28	7.64	5.45	4.57	4.07	3.75	3.53	3.36	3.23	3.12	3.03	2.60	2.06
29	7.60	5.42	4.54	4.04	3.73	3.50	3.33	3.20	3.09	3.00	2.57	2.03
30	7.58	5.39	4.51	4.02	3.70	3.47	3.30	3.17	3.07	2.98	2.55	2.01
40	7.31	5.18	4.31	3.83	3.51	3.29	3.12	2.99	2.89	2.80	2.37	1.80
60	7.08	4.98	4.13	3.65	3.34	3.12	2.95	2.82	2.72	2.63	2.20	1.60
120	6.85	4.79	3.95	3.48	3.17	2.96	2.79	2.66	2.56	2.47	2.03	1.38
∞	6.63	4.61	3.78	3.32	3.02	2.80	2.64	2.51	2.41	2.32	1.88	1.00

The calculated value of F must be larger than or equal to the table value for significance.

